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INTEGER PROGRAMMING∗

N. L. BOLAND† , A. C. EBERHARD‡ , F. ENGINEER† , AND A. TSOUKALAS‡

Abstract. The feasibility pump is a recent, highly successful heuristic for general mixed integer
linear programming problems. We show that the feasibility pump heuristic can be interpreted as a
discrete version of the proximal point algorithm. In doing so, we extend and generalize some of the
fundamental results in this area to provide new supporting theory. We show that feasibility pump
algorithms implicitly minimize a weighted combination of the objective and a term which penalizes
lack of integrality. This function has many local minima, some of which correspond to feasible integral
solutions; the feasibility pump’s use of random restarts can be viewed as seeking to escape these local
minima when they are not feasible integral solutions. This interpretation suggests alternative ways
of incorporating restarts, one of which is the application of cutting planes. Numerical experiments
with cutting planes show encouraging results on standard test libraries.
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1. Introduction. In spite of the continuous improvement of both commercial
and open source solvers, numerous mixed integer programming (MIP) problems of
practical importance remain intractable. In practice, where rigorous algorithms fail,
heuristics often succeed to provide feasible solutions of good quality. Apart from their
self-evident value, good feasible solutions are also useful in speeding up the search of
branch and cut algorithms. General purpose heuristics include [2, 3, 4, 13, 14, 15, 16,
19, 20, 21, 22, 23]. We direct the reader to [6] for a recent survey.

A heuristic that has attracted significant interest in recent years is the feasibility
pump (FP) [17]. The FP starts from the linear program (LP) optimum and computes
two trajectories of points, one integer and the other LP feasible, by iteratively ap-
plying rounding and projection operations. Every LP feasible point is rounded to an
integer point and every integer point is projected back onto the LP feasible region
using the l1 norm. As both the rounding and the projection are minimal distance
operations (with respect to the l1 norm), the distance between pairs of points on the
two trajectories decreases monotonically until the method cycles, unable to further
decrease the distance. If the distance is reduced to zero before cycling, then a feasible
point has been obtained. Otherwise a random move is used to restart the method from
a new point. In the original FP [17], the only bias of the method toward points of good
objective value is the starting point, so the random restarts threaten to escape the
good quality area. Thus, the feasibility pump uses a sophisticated restart scheme, at-
tempting to displace the current point in an economic way by “minor perturbations,”
and performs a “major restart” only in the presence of further failures.
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832 BOLAND, EBERHARD, ENGINEER, AND TSOUKALAS

The FP method demonstrates encouraging performance on a large class of test
problems but behaves better for binary problems than for general integer variables.
Thus, [5] first deal with the binary variables in isolation, treating general integers
as continuous variables. General integer variables are treated as integer in a subse-
quent second round only after a point satisfying integrality for all binary variables is
obtained. In [1] the objective feasibility pump (OFP) is proposed, where the projec-
tion problem is modified to include an objective function term, while in [18] simple
rounding is substituted by a sophisticated constraint propagation approach. The lat-
ter makes use of information about the LP feasible region, with rounding done one
variable at a time, while exploiting constraint information to disqualify unacceptable
values. A modified penalty function is used in [26] that implicitly promotes a bias
toward fixing more variables at integral values during the projection step.

The numerical results presented in [1] indicate that adding an objective term to
the projection problem is beneficial to the quality of the solution, while not compro-
mising computation time too much. Constraint propagation [18] is shown to further
improve solution quality while also decreasing the failure rate of the method. The
modified penalty function of [26] yields an improvement in efficiency and number of
iterations relative to the original FP [17]. Recently the FP has been successfully
extended to nonlinear problems; see, for example, [8, 10, 11], which focus on the
challenge introduced by nonlinear (and nonconvex) constraints.

In this paper, we explore the relationship between generalized forms of the FP and
proximal point algorithms, in the context of linearly constrainted (possibly nonlinear)
integer programs (see, for example, [9, 25]). In doing so, we provide insights about the
properties of the points generated by the FP method and of its mathematical behavior.
Aside from the OFP, methods that improve the original FP can be characterized as
either putting some of the LP into the rounding step (e.g., constraint propagation in
[18]) or putting some integrality into the projection step [26]. Here we also propose
to explore the latter, but in a different way: by incorporating integer cutting planes
into the LP projection step.

We consider the general nonlinear MIP

min g(x)

s.t. Ax ≥ b, xI ∈ I,(1.1)

where g : Rn → R is a possibly nonlinear continuous function, I is the index set
of integer variables, and I = Zm, where m = |I|. The remaining variables, de-
noted by xR, are allowed to vary over Rn−m; the nonlinear MIP feasible set is
F := {x ∈ Rn | Ax ≥ b, xI ∈ I}, where A and b are assumed rational. We will refer
to integral points as being those points x ∈ Rn for which xI ∈ I. Although the ob-
jective may be nonlinear, throughout we will refer to the feasible set with integrality
relaxed as the LP feasible set, defined as FLP := {x ∈ Rn | Ax ≥ b}.

In this paper we will show that the FP heuristic can be interpreted as a kind
of proximal point method, by comparing the FP with the primal-proximal heuristic
introduced in [12]. Our analysis focuses on the “inner loop” of the FP method,
during which the two trajectories of rounded and projected points are calculated,
before cycling necessitates a perturbation or restart. We call this the pumping process
and the points generated by rounding during this process the discrete proximal point
iterates. Each of these points is associated with the LP feasible point it was rounded
from: we call these the LP feasible iterates. The key departure of the FP method from
standard proximal point methods is the rounding step, which in effect is a projection
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A NEW APPROACH TO THE FEASIBILITY PUMP 833

onto the integer points, giving a point minimizing I(x) := min {‖xI − yI‖1 | yI ∈ I}.
Thus the rounding step implicitly calculates the measure of lack of integrality given by
I(x), where x is an LP feasible iterate. One of the important results of our analysis in
this paper is that LP feasible iterates generated during the pumping process converge
to a local minimum of the function g + rI on FLP , where r > 0 is a parameter that
weights the importance of the two conflicting objectives. Thus local minimization of
the objective g + rI over FLP is associated with cycling events in the FP method.

In [24] and [26] pure integer programs (IP) were studied and it was noted that the
global minimizers of various penalized continuous problems over FLP coincide with
the global optimal solutions of the original IP. In this paper we will show that a similar
interpretation of the original FP [17] and the OFP [1] can be made for an MIP. Thus
if the pumping process of an FP method can be started in the right region (and with
the right value for the parameter r), it will converge to an optimal solution of the
MIP. Interestingly, FP methods do contain a mechanism for restarting the pumping
process.

When the FP method detects cycling it performs either a “major” or a “minor”
restart, both using some form of randomization. These restarts form the outer loop
of iterates of the FP. We provide numerical results which show that the repeated
use of major restarts in particular correlates well with cases in which poorer solution
quality is obtained by the FP method. Our analysis explains that cycling occurs
because local optimality of the function g+ rI over FLP has been obtained and hence
suggests some alternative ways to overcome this problem when this local minimum
is not integral. Two approaches to escaping these undesirable local optimum present
themselves: effect a change on either the objective function or the feasible region
FLP . The former can be achieved by varying the weighting parameter r > 0; we
plan to consider this approach in future work. In this paper, we focus on the latter
and propose to alter the feasible region via the introduction of cuts to remove the
local, nonintegral minimum at which the cycling has occurred. We give encouraging
numerical experiments which demonstrate the potential for this cutting strategy. We
show the strategy tends to delay the use of major restarts and leads to improvements
in the quality of the feasible integral solutions found.

The paper is structured as follows. In section 2 we reinterpret the inner iterates
of the FP as a kind of a proximal point iteration and discuss the connection this
interpretation has to the primal-proximal heuristic introduced in [12]. As we require
more general versions of some results of [12, sections 1.3 and 2] we provide extensions
of these results for our nonlinear MIP in section 3. In particular, we show that quite
general coercive penalties can be used in place of the l2 norm which was used in [12] in
order to exploit Lagrangian relaxation techniques. As the FP exploits LP relaxations
our analysis departs from that of [12] significantly at this point and in section 4 we
complete the development begun in section 2 by showing how the minimization of
g + rI over FLP results from such proximal point iterates (the “pumping process”).
In section 5 cycling is shown to be associated with the failure to locate an integral
LP feasible point at a local minimum of g+ rI. A modification of the OFP algorithm
of [18] is proposed in section 6. Here extensive numerical testing is undertaken in
which we selectively introduce cuts to prevent cycling instead of the sole use of minor
perturbations.

2. FP, proximal points, and concave penalties. In this section we draw
out some comparisons and contrasts with recent approaches that convert integer pro-
grams to nonlinear continuous optimization problems. Consider the general nonlinear
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834 BOLAND, EBERHARD, ENGINEER, AND TSOUKALAS

MIP (1.1). Proximal point approaches [12] consider regularizing this problem using a
penalty ρ (x) to obtain a continuous optimization problem,

min
y

ϕr (y) , where(2.1)

ϕr (y) :=min {g (x) + rρ (x− y) | x ∈ F} .(2.2)

Regularization is a common tool used in nonlinear and nonsmooth optimization. In a
sense, MIPs are highly nonsmooth, as their domains are disconnected. Regularization
in the form of (2.2) can be seen as a mathematical tool to construct, in a systematic
way, an equivalent continuous problem, with smoother functions. The results can
have attractive properties, as we will see in sections 3 and 4.

The analysis of the problem (2.1) when ρ is the Euclidean l2 norm was carried
out in some detail in [12]. The main property that arises is that integrality of local
minima of (2.1) is ensured and do often correspond to the feasible solutions of (1.1).
Indeed y0 (where (y0)I ∈ I) is a local minimum of ϕr exactly when x = y0 is the
solution to the minimization problem ϕr(y0).

Since the calculation of the objective ϕr is as difficult as the original MIP, in [12]
Lagrangian relaxation is used to obtain a solvable relaxed problem. This gives an
underestimate ϕ̃r of ϕr. Unfortunately the local minima of the relaxation ϕ̃r are not
assured to be integral. In section 3 of [12], approaches to varying the parameter r > 0
to obtain feasible integral points are considered, but the results are inconclusive and
the tone of [12] is quite negative in this respect. In the final section of [12] binary
problems are addressed and a penalty used to enforce integrality, but no role for
rounding is considered.

The OFP, by contrast, drops the integrality constraint in (2.2) and takes ρ to be
an l1 norm, so that a relaxation of ϕr when g (x) = cTx can be calculated as a linear
program. Thus we arrive at the problem

min
y

ϕLP
r (y) , where(2.3)

ϕLP
r (y) :=min {g (x) + r ‖x− y‖1 | x ∈ FLP } .(2.4)

Proximal point algorithms seek local optima by a kind of fixed point iteration, where
the center y is replaced at each step by the optimal solution of the regularization
problem (e.g., of (2.4)). FP methods also take this approach, but to try to encourage
integrality of a solution, a new center at y0 with (y0)I ∈ I is sought at each iterate. If
x = y0 is the solution to the minimization problem, the FP method is clearly finished,
having obtained a feasible integral point. Otherwise, the nonintegral solution of (2.4)
is rounded to the nearest integral point in order to provide the new center for the
next iteration.

Since FP methods use the l1 norm, the analysis of [12] does not directly apply.
Thus in order to establish similar properties, we in section 3 extend these results and
in doing so prove they hold for general class of coercive functions ρ, including the l1
norm as a special case. This allows us to show that regularization preserves the global
minimizers (which are the optimal solutions of the MIP) and retains the same local
minimizers (which correspond to the feasible integrals solutions of the MIP). These
correspondences are established in section 3 for our general nonlinear MIP.

In section 5 we show that the pumping process applied in an OFP setting finds
local optima of g+rI over FLP and so the function I acts as a penalty for the deviation
from integrality. The original FP is essentially the limiting version of the scheme for
r → ∞. Thus the pumping phase of the FP implicitly performs a minimization
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of a concave nonlinear integrality penalty via a combination of projective LPs and
roundings. Our results provide some additional insights. For example, if the OFP
finishes early without major restarts, it appears likely that the resulting solution will
be both an optimal for the original MIP and a global minimum of g + rI.

This approach is distinct from that proposed in [24], where piecewise concave
penalties are used to obtain an exact penalization for IPs and is motivated by the
long observed connection that binary programs have to concave minimization. This is
exploited in [26] to provide an interpretation of the FP for the case of binary problems.
Motivated by the observation of [14] they note that the original FP [17] for binary
problems can be interpreted as a Frank–Wolfe method [7, section 2.2.2] as applied to
a nondifferentiable concave function over the feasible set FLP . They develop a theory
that relates the global minima of these continuous penalized problems to the solution
of an IP. We are able to provide similar results in section 5, thus showing a connection
of our approach to that used in [24].

3. General properties of regularizations. In this section we generalize key
results of [12]. The generalization takes two forms: we use a general class of coercive
penalty ρ instead of ρ = ‖·‖2 and give results for mixed rather than pure IPs. This
yields results for ρ = ‖·‖1 that apply to the FP heuristic for MIPs. In particular, we
show that the regularization (2.1) has global and local minimizers closely related to the
optimal and feasible points of the original MIP. We posit the following assumptions.

Assumption. A continuous function ρ : Rn → R that satisfies the following con-
ditions is called an integer compatible regularization function (ICRF) iff the following
hold:

Condition 1: ρ (x) ≥ 0 for all x and x = 0 iff ρ (x) = 0.
Condition 2: If γ ∈ (0, 1) then ρ (γx) < ρ (x) for all x �= 0.
Condition 3: There exists a continuous, strictly increasing function s (·) : R+ →

R+ and a K̄ such that for all K < K̄ we have ρ (x) ≤ K implies ‖x‖1 ≤ s−1(K) for
the l1 norm ‖·‖1 on Rn.

Remark 3.1. These properties are deliberately chosen to be general enough to
allow all the theory to cover the case of any norm on Rn and for most of the theory
to encompass the cases of some concave penalties already introduced in the literature
for binary problems. Recall that in finite dimensions all norms are equivalent to the
l1 norm, i.e., for all norms ‖ · ‖ there exists constants A,B > 0 such that A‖ · ‖1 ≥
‖·‖ ≥ B‖·‖1. With this in mind it is clear how these assumptions relate to equivalent
norms.

In [26] and [24] penalty functions were generated as follows:

(3.1) ρ (x) :=
∑
i

p (|xi|) ,

where p : R+→ R+ is a concave, strictly increasing function. Some examples taken
from [26] that were used explicitly for binary problems are

p (t) = log (t+ α)− logα,(3.2)

p (t) = −[t+ α]−q + α−q,(3.3)

p (t) = 1− exp (−αt) ,(3.4)

p (t) = [1 + exp (−αt)]−1 − 1

2
(3.5)

for some α, q > 0. We wish to include these functions in our analysis in order to
make some comparisons with the approaches in [26] and [24]. It is interesting to note
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836 BOLAND, EBERHARD, ENGINEER, AND TSOUKALAS

that the case when p(x) = x corresponds to p being both simultaneously concave and
convex and to ρ(·) = ‖ · ‖1.

The following justifies the use of the Conditions 1 to 3 above for penalties of the
form (3.1).

Proposition 3.2. Suppose ρ is defined via (3.1) with p (0) = 0, p (t) > 0 for
t �= 0 and p concave, continuous, and strictly increasing function. Then ρ is an integer
compatible regularization function. In particular when the Range p = [0,+∞) we may
take K̄ = +∞.

Proof. Suppose

ρ (x) =
∑
i

p (|xi|) ≤ K;

then for each i we have |xi| ≤ p−1(K) when K ∈ Range p. As Range p contains an
interval of the type [0, b) we may take 0 < K < K̄ := b. In particular, when b = +∞
we can take K̄ = +∞. Consequently

‖x‖1 ≤
√
n ‖x‖∞ ≤

√
np−1(K)

and hence ρ satisfies Condition 3 with s(·) := 1√
n
p(·). Clearly ρ ≥ 0 and ρ (x) = 0 iff

‖x‖1 = 0. As s is strictly increasing ρ (γx) =
∑

i p (γ |xi|) <
∑

i p (|xi|) = ρ (x).
Let

f (x) :=

{
g (x) if Ax ≥ b, xI ∈ I,
+∞ otherwise,

where g : Rm → R is a continuous function. Then

ϕr (y) = inf {g (x) + rρ (x− y) | Ax ≥ b, xI ∈ I}
= inf {f (x) + rρ (x− y) | x ∈ Rn} .

Define

fr (x, y0) := f (x) + rρ (x− y0) for all x ∈ Rn

and so ϕr (y0) = inf {fr (x, y0) | x ∈ Rn}. Note that as g is continuous and the feasible
region F := {x | Ax ≥ b, xI ∈ I} is a closed set it follows that f : Rm → R
is a lower semicontinuous function. We also observe that as ϕr is an infimum of
a family of continuous functions y 
→ f(x) + rρ(x − y) it is, at worst, an upper
semicontinuous function of the variable y. We can claim more under mild conditions.
Denote the epigraph epi f := {(x, α) | f(x) ≤ α} and note that epih ⊇ epi f + epi rρ
iff h(y) ≤ f(x) + rρ(x − y) for all x, y ∈ Rn. Thus geometrically epiϕr is the largest
extended real valued function whose epigraph contains the sum epi f + epi rρ.

Theorem 3.3. Suppose g : Rn → R is continuous and the feasible region F
is closed and nonempty. Suppose in addition that the regularized function ϕr̄(y0) >
−∞ for some y0 and that ρ is an ICRF that is also Lipschitz continuous (with a
global Lipschitz constant). Then ϕr is finitely valued for r ≥ r̄ and globally Lipschitz
continuous.

Proof. Clearly ϕr(y) ≥ ϕr̄(y) for all y and r ≥ r̄. Thus when ϕr̄(y) > −∞ for all
y, then ϕr(y) > −∞ for all r ≥ r̄. Moreover as ϕr(y) ≤ g(x) + rρ(x − y) < +∞ for
any x ∈ F finiteness of ϕr follows. Thus if we can show ϕr(y) is bounded away from
negative infinity for all y, then we would have shown it to be finite valued.
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Let Cμ denote the cone epiμ‖·‖. Note next that the Lipschitz continuity property
of ρ corresponds to the existence of a Lipschitz constant μ > 0 such that epi ρ+Cμ ⊆
epi ρ. Now epi ρ + Cμ ⊆ epi ρ in turn implies epi rρ + Crμ ⊆ epi rρ with intCrμ �= ∅
for all r.

Suppose ϕr(y) = −∞ for some y; then

(y,−n) ∈ epi f + epi rρ

for all n ∈ Z+ and so (using intCrμ �= ∅)

Rn+1 ⊆
∞⋃
n=1

((y,−n) + Crμ) ⊆ (epi f + epi rρ) + Crμ

⊆ epi f + (epi rρ+ Crμ) ⊆ epi f + epi rρ ⊆ epiϕr,

implying ϕr ≡ −∞, contradicting ϕr(y0) finite. Let ϕr(y) < α and take x such that
f(x) + rρ(x − y) < α. Let z ∈ Rn; then

ϕr(z) ≤ f(x) + rρ(x − z) ≤ (f(x) + rρ(x − y)) + r (ρ(x− z)− ρ(x− y))

< α+ r (ρ(x− z)− ρ(x− y)) ≤ α+ rμ‖z − y‖,

where we have used the Lipschitz continuity of ρ again. As this holds for all α > ϕr(y)
we have ϕr(z) ≤ ϕr(y) + rμ‖z − y‖. As y, z ∈ Rn are arbitrary we are finished.

Remark 3.4. The conditions of Theorem 3.3 are satisfied for any norm and all
the concave penalties formed via (3.1) using the various choices for the function p.

The following results are a generalization of the results of [12, section 1] and these
form a basic tool in the proof of subsequent properties. The most important property
is Property 3, which roughly says that local minima of ϕr are not only integral but
correspond to “fixed points” of the mapping y0 
→ argmin {fr (x, y0) | x ∈ Rn}.

Lemma 3.5. Posit the assumption that ρ is an ICRF.
1. For all y ∈ Rn the function r 
→ ϕr (y) is nondecreasing.
2. ϕr (y) ≤ f (y) for all y ∈ Rn for all r ≥ 0.
3. Assume f is bounded from below. Then there exists r̄ > 0 such that if y0 is

a local minimum of ϕr for some r̄ < r, then x = y0 is the unique minimum point of
fr(·, y0) in

(3.6) ϕr (y0) = inf {fr (x, y0) | x ∈ Rn} .

In particular ϕr (y0) = f (y0) and y0 is integral. Moreover, if K̄ = +∞ in the
definition of ICRF, then r̄ = 0.

4. Local minima of ϕr are also local minima of ϕr′ for r′ ≥ r.
Proof. We show part 3 only, as it is the critical observation; the other observations

follow in a similar way to the results of [12, section 1]. As f is lower semicontinuous
and bounded from below and Condition 3 of the definition of a integer compatible
regularization function holds, implying the existence of function s, we have

{x | g (x) + rρ (x− y0) ≤ K, Ax ≥ a, xI ∈ I}
(3.7)

⊆
{
x | min

z
f (z) + rρ (x− y0) ≤ K

}
⊆

{
x | ‖x− y0‖1 ≤ s−1

(
K −minz f (z)

r

)}
,
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838 BOLAND, EBERHARD, ENGINEER, AND TSOUKALAS

which is bounded and nonempty for any K > minz f (z) and r > 0 sufficiently large
so that (

K −minz f (z)

r

)
< K̄.

Let y0 be a local minimum of ϕr, so there exists an integral point x0 ∈ F and a
neighborhood of y0 denoted by Bε (y0) (for some ε > 0) such that

f (x0) + rρ (x0 − y0) = ϕr (y0) ≤ ϕr (y) ≤ f (x0) + rρ (x0 − y)

for any y ∈ Bε (y0). Hence ρ (x0 − y0) ≤ ρ (x0 − y) for any y ∈ Bε (y0). Assume that
ρ(x0−y0) > 0. Take y = y0+t (x0 − y0) and so if x0−y0 �= 0 we have for t sufficiently
small

ρ (x0 − y0) ≤ ρ (x0 − y) = ρ ((1− t) (x0 − y0)) < ρ (x0 − y0) ,

which is a contradiction when 0 < t < 1 under Condition 3 if ρ (x0 − y0) > 0. Thus
ρ (x0 − y0) = 0 and so x0 = y0 and (y0)I ∈ I with ϕr (y0) = fr (y0, y0) = f (y0).

The relationship between infy∈Rn ϕr (y) and inf {g (x) | Ax ≥ b, xI ∈ I} is devel-
oped in the next result, which is essentially Theorem 1.5 of [12] and provided for
completeness. This result demonstrates that there is a direct correspondence be-
tween the local and global minimizers of the nonlinear MIP and the unconstrained
continuous regularized problem ϕr .

Theorem 3.6. Posit the assumption that ρ is an ICRF. Then the minimization
of f and ϕr are related as follows:

1. inf {g (x) | Ax ≥ b, xI ∈ I} = inf {ϕr (y) | y ∈ Rn} .
2. If x∗ ∈ argmin {f (y) | y ∈ Rn} = argmin {g (x) | Ax ≥ b, xI ∈ I}, then

x∗ ∈ argmin {ϕr (y) | y ∈ Rn}.
3. Suppose r̄ is as specified in Lemma 3.5, part 3, and f is bounded below. Then

for r > r̄ we have y∗ minimizes (resp., locally minimizes) ϕr, then y∗ minimizes
(resp., locally minimizes) f .

Proof. Consider the first part. For any x and y in Rn we have fr(x, y) ≥ f(x)
and hence ϕr(y) ≥ inf f and so inf ϕr ≥ inf f . On the other hand, Lemma 3.5,
part 2, gives inf ϕr ≤ inf f and equality. Suppose x∗ ∈ argmin{f(x) | x ∈ Rn}.
Then using Lemma 3.5, part 2, again we have inf ϕr = inf f = f(x∗) ≥ ϕr(x

∗)
and so x∗ ∈ argmin{ϕr(y) | y ∈ Rn}. Finally, posit the assumption of Lemma 3.5,
part 3, and suppose y∗ minimizes (resp., locally minimizes) ϕr; then f(y∗) = ϕr(y

∗) ≤
ϕr(y) ≤ f(y) for all y (y close to y0).

The converse of Lemma 3.5, part 3, may be developed and this result establishes
when the local minimizers of the regularized problem are actually strict local mini-
mizers. As the results of this paper are in the main based only on the implication
given in Lemma 3.5, part 3, we relegate the proof of the next result to an appendix.

Proposition 3.7. Suppose g is bounded below on the feasible region F , ρ is an
ICRF, and r > r̄ (as specified in Lemma 3.5, part 3). A point y0 is a local minimum
of ϕr iff x = y0 with xI ∈ I is a unique optimal solution of

(3.8) ϕr (y0) = min {g (x) + rρ (x− y0) | Ax ≥ b, xI ∈ I} .
Indeed if y0 is a local minima of ϕr, then it is a strict local minimum of ϕr in the
following cases:

1. We have an IP (i.e., m = n).
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2. (y0)R is a strict local minimum of the continuous partial regularization

Gr (yR) := min
zR∈Rn−m

{Gy0 (zR) + rρ (zR − yR)}

of the function Gy0(zR) := f((y0)I , zR) : Rn−m → R.
In general we can only assert that when y0 is a local minimum of ϕr, then (y0)R

must be a local minimum of Gr, while (y0)I is always a strict local minimum of
xI 
→ ϕr(xI , (y0)R).

The next result completes our goal of relating the local minimizers of ϕr to the
feasible solution of the MIP defined in (1.1) and the global minimizers of the regu-
larized problem ϕr to the global minimizers of the original nonlinear MIP defined in
(1.1). This is a generalization of Theorem 2.2 of [12]. Note that when ρ is a norm or
an appropriate cohersive function with Range ρ = [0,+∞) (see Proposition 3.2), then
one may take K̄ = +∞ in the definition of ICRF.

Theorem 3.8. Suppose ρ is an ICRF. Then there exists an r̄ > 0 such that for
r > r̄ any local minimum of ϕr lies in the feasible region F . Moreover, the following
hold:

1. For r > r̄ large enough, the local minima of ϕr are exactly the points of F .
2. Suppose that K̄ = +∞ in the definition of ICRF (and so by Lemma 3.5 part 3

we may take r̄ = 0). Then for r > 0 small enough, the local minima of ϕr are exactly
the optimal solutions of

(3.9) min {g (x) | Ax ≥ b, xI ∈ I}
in the following cases:

1. we have m = n, i.e., a pure IP, or
2. both g and ρ are convex functions.

Proof. Consider the first part. In view of Lemma 3.5, part 3, we only need show
that if y0 ∈ F , then y0 is a local minimum of ϕr for r sufficiently large. Consider
K := ϕr (y0) + 2, r > r̄, sufficiently large so that via (3.7) we have the set

(3.10) FK (y0) := {x ∈ Rm | {f (x) + rρ (x− y0)} ≤ K }
bounded. As f is lower semicontinuous and rg(· − y0) is continuous, their sum is
also lower semicontinuous, implying FK(y0) is a closed set. Next note that as ϕr(y)
is defined as an infimum of continuous functions y 
→ f(x) + rρ(x − y) it is upper
semicontinuous. Thus we may take y sufficiently close to y0 so that ϕr (y) + 1 <
ϕr (y0) + 2 := K and for all x ∈ FK (y0) with xI �= (y0)I , then

ρ (x− y) = ρ (x− y0) + [ρ (x− y)− ρ (x− y0)]

≥ inf {ρ (x− y0) | x ∈ FK (y0) with xI �= (y0)I}
− [ρ (x− y0)− ρ (x− y)]

= ε− [ρ (x− y0)− ρ (x− y)] > 0,

where inf {ρ (x− y0) | x ∈ FK (y0) with xI �= (y0)I} := ε > 0. Take r > 0 sufficiently
large so that ε

2 > Γ
r > 0, where

Γ := max {f (x)− f (x′) | x, x′ ∈ FK (y0)} = max{g(x)− g(x′) | x, x′ ∈ F ∩ FK(y0)},
which is finite as g is continuous, FK (y0) is compact, and F is closed. We will assume
we take y sufficiently close to y0 so that at least [ρ (x− y0)− ρ (x− y)] < ε

2 and hence

ρ (x− y) ≥ ε
2 > Γ

r .
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Then for x ∈ FK (y0) with xI �= (y0)I we have (as y0 ∈ FK (y0))

f (x) + rρ (y − x) = {f (x) − f (y0) + rρ (x− y)}+ f (y0)

≥ −Γ + r
ε

2
+ f (y0) ≥ −Γ + r

Γ

r
+ f (y0) = f (y0) ≥ ϕr (y0) .

Next note that if x ∈ FK−1 (y) and we have y is sufficiently close to y0 so that
r|ρ (x− y)− ρ (x− y0) | ≤ 1, then

K − 1 ≥ f (x) + rρ (x− y)

= f (x) + rρ (x− y0) + r (ρ (x− y)− ρ (x− y0))

≥ f (x) + rρ (x− y0)− 1

and so FK−1 (y) ⊆ FK (y0). Consequently

ϕr (y) = inf {f (x) + rρ (y − x) | x ∈ FK−1 (y)}
≥ ϕr (y0) .

For the second part we argue again along the lines of Theorem 2.2 of [12]. Let y0
be a local minimizer of ϕr and we already know that y0 ∈ F and that ϕr (y0) = f (y0)
and need to show that y0 is optimal for the MIP for r small. Denote V ∗ the optimal
solutions of the MIP. Place V ∗

I := {xI | x ∈ V ∗},
v+ = min {f (x) | x ∈ F ∩ {x | xI /∈ V ∗

I }} and

v∗ = min {f (x) | x ∈ F} .
Now as the variables are partly integral valued we have v+ > v∗ as xI �= yI if y ∈ V ∗

and xI ∈ V ∗
I . Let K = v∗ +1 and suppose contrary to assertion that y0 /∈ V ∗ for any

r > 0. Denote

D := max {ρ (x− y0) | xI �= (y0)I , x ∈ V ∗} .
When D = 0 we immediately have (y0)I ∈ V ∗

I . Otherwise D > 0; then we choose
0 < r < (v+ − v∗) /D and we have for any x∗ ∈ V ∗

f (y0) = ϕr (y0) ≤ f (x∗) + rρ (x∗ − y0)

≤ f (x∗) + rD < f (x∗) + v+ − v∗ = v+.

As f (y0) < v+ we must have (y0)I ∈ V ∗
I once again. If n = m (i.e., we have an IP)

we are finished as then y0 ∈ V ∗.
In the final case we assume contrary to the theorem that (y0)R /∈ V ∗

R and v∗ <
f ((y0)I , (y0)R) = f (y0). As (y0)I ∈ V ∗

I , y0 ∈ F , and y0 /∈ V ∗, we must have the
existence ȳR such that ((y0)I , ȳR) ∈ F and v∗ = f ((y0)I , ȳR) < f ((y0)I , (y0)R) .
Thus by Lemma 3.5, part 3, we have

ϕr ((y0)I , ȳR) ≤ f ((y0)I , ȳR)

< f ((y0)I , (y0)R) = min
y
{f (y) + r (y − y0)} = ϕr (y0) .

For t sufficiently small we have (1− t)y0 + t ((y0)I , ȳR) in the neighborhood in which
y0 is the local minimum of ϕr. When ρ and g are convex we have ϕr convex and so

ϕr ((1− t)y0 + t ((y0)I , ȳR) ) ≤ (1− t)ϕr (y0 ) + tϕr ((y0)I , ȳR)

< (1− t)ϕr (y0 ) + tϕr (y0) = ϕr (y0) ,

implying y0 is not a local minimum of ϕr, a contradiction.
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4. The proximal point heuristic and relaxation of integrality. The rela-
tionship of the analysis above to the FP methods lies in the observation that an OFP
iteration solves (2.4), i.e., solves the LP relaxation of problem (3.6) with g (x) = cTx,
and the integer compatible regularization function given by ρ (x) = ‖x‖1. At this
juncture it is important to note that Range ρ = [0,+∞) so we may take r̄ = 0, which
will be the case for the remainder of the paper unless otherwise indicated. Recall the
definition of ϕLP

r from (2.4) and observe that

(4.1) ϕLP
r (y) ≤ ϕr (y)

for all y. When g (x) = cTx the problem of calculating ϕLP
r (y) may be reformulated

as an LP. Indeed this is the basis of the FP strategy. Calculating ϕLP
r (y) is not so

easy when g is nonlinear, but we carry out the following analysis without any linearity
assumptions on g, and this allows for the possibility of developing some other novel
numerical method in the future.

Remark 4.1. The analysis of this section (and the next) can be carried out using
a much more general form of an integer compatible regularization function ρ than
the l1 norm. In particular, a general norm, or any other convex, integer compatible
regularization function, would suffice. For example, if g were quadratic, one could use
ρ (x) = ‖x‖2 and then ϕLP

r (y) could be solved as a quadratic program. As we wish
to emphasis our comparison with the feasibility pump, these generalizations are not
pursued here.

Placing

h (x) :=

{
g (x) if Ax ≥ b, x ∈ Rn,
+∞ otherwise

we may write ϕLP
r as a proximal point problem,

(4.2) ϕLP
r (y0) := inf

x
{h (x) + r ‖x− y0‖1} ,

which is well known to define a convex, Lipschitz function of y0 when g is convex (see
[12, Theorem 1.6] and references). The same proof technique as used in Lemma 3.5
shows that if y0 is a local minimum of ϕLP

r , then x = y0 is the unique minimum point
of h (·)+rρ ‖· − y0‖1. Now in the event that (y0)I ∈ I, then clearly ϕLP

r (y0) = ϕr (y0)
and x = y0 is the unique minimum point of h (·) + rρ ‖· − y0‖1 over x constrained to
xI ∈ I. Furthermore, using (4.1) and the fact that y0 is a local minimum of ϕLP

r we
have

(4.3) ϕr (y0) = ϕLP
r (y0) ≤ ϕLP

r (y) ≤ ϕr (y) for all y close to y0.

Thus y0 must also be a local minimum of ϕr. By Theorem 3.8 we have y0 ∈
{Ax ≥ b, xI ∈ I} and moreover if g is convex and r is sufficiently small y0 is actually
optimal for (3.9). The OFP [1] increases r at each step of the pumping process and so
between major restarts the magnitude of r is directly related to the iteration number
in this pumping process. When the OFP terminates early, without any restarts, r
will be smaller than it would be if multiple restarts occurred. (Long durations of
the pumping process are not observed in numerical tests.) As smaller values of r are
needed for the FP to generate optimal solutions (an observation that follows from
Theorem 3.8, part 2), we hope that the FP’s chances of generating an optimal point
will be higher when we have fewer restarts.
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Proposition 3.7 indicates that we can detect in (y0)I ∈ I a local minimizer of ϕr

by checking if xI = (y0)I (∈ I) is a unique optimal solution of (3.8) or in our case it
suffices to check if xI = (y0)I(∈ I) is a unique optimal solution of (4.2) (for any fixed
r > 0 = r̄). Now when y0 ∈ F := {Ax ≥ b, xI ∈ I} we have from Theorem 3.8 that
y0 is a local minimum of ϕr for r sufficiently large and hence x = y0 is the unique
optimal solution of (3.8). Is the same true for our relaxation (4.2)? The following
partly answers this question.

Theorem 4.2. Assume g is continuous and bounded below on {Ax ≥ b, x ∈ I}.
1. Suppose r is sufficiently small and y0 with (y0)I ∈ I is a local minima of

ϕLP
r . Then y0 is an optimal solution of (3.9). In particular x = y0 with (y0)I ∈ I is

the minimum of the problem

(4.4) inf {g (x) + r ‖x− y0‖1 | Ax ≥ b, x ∈ Rn} .
2. Suppose r is sufficiently large and y0 with (y0)I ∈ I is a local minima of ϕLP

r .
Then y0 ∈ F := {Ax ≥ b, xI ∈ I} and x = y0 solves the problem (4.4). Conversely,
when g is convex and y0 ∈ F , then x = y0 with xI ∈ I solves the problem (4.4) for r
sufficiently large.

Proof. Suppose y0 with (y0)I ∈ I is a local minima of ϕLP
r then by (4.3) we have

y0 a local minimum of ϕr and we may now apply Theorem 3.8 to obtain all but the
last assertion.

Let y0 ∈ F and as h is convex, lower-semicontinuous, and bounded below with
domh = {Ax ≥ b, x ∈ Rn} we may take z0 ∈ ∂h (y0) �= ∅. Then for all x ∈ domh we
have

h (x)− h (y0) ≥ 〈z0, x− y0〉,
implying g (x) + r ‖x− y0‖1 ≥ g (y0) + r ‖x− y0‖1 − ‖z0‖∞ ‖x− y0‖1

or g (x) + r ‖x− y0‖1 ≥ g (y0) + (r − ‖z0‖∞) ‖x− y0‖1 > g (y0)

for all x ∈ {Ax ≥ b, x ∈ Rn} and all x �= y0 when r > ‖z0‖∞. Thus x = y0 with
(y0)I ∈ I is the local minimum in (4.4).

One can of course directly test if a point y0 is feasible, but if this test fails
how can we improve our next test point? This is where the above comes into play.
Suppose that we start with an initial feasible point x0 ∈ FLP . Denote by y0 ∈
argmin {‖x0 − y‖1 | yI ∈ I} the closest integral point. We solve (4.4) to obtain x1 ∈
argmin {g (x) + r ‖x− y0‖1 | Ax ≥ b, x ∈ Rn} and find that if x1 �= y0, then y0 fails
to be a local minimum of ϕLP

r . Then when x0 �= x1 we have

g (x1) + r ‖x1 − y0‖1 ≤ g (x0) + r ‖x0 − y0‖1(4.5)

or g (x1) ≤ g (x0)− r [‖x1 − y0‖1 − ‖x0 − y0‖1] < g (x0) ,(4.6)

a decrease in objective value as long as

‖x1 − y0‖1 > ‖x0 − y0‖1 = I (x0)

:= min {‖x0 − y‖1 | yI ∈ I} = ‖(x0)I − (y0)I‖1 .(4.7)

Inequality (4.6) indicates that this process does not cycle when (4.7) holds. Using
(4.5), the fact that I (x1) ≤ ‖x1 − y0‖1, and ‖x0 − y0‖1 = I (x0) we have for any two
successive iterates

(4.8) g (x1) + rI (x1) ≤ g (x0) + rI (x0) .
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Thus the proximal point iteration combined with rounding always attempts to de-
crease the weighted sum g + rI. It progressively decreases the weighted sum of ob-
jective and integrality gap measure I at the feasible (possibly nonintegral points). As
the point x1 may not be integral and our test requires the new center at an integral
point, we must round x1 to get (y1)I ∈ I.

This observation somewhat justifies the strategy used in [1], where successive
guesses of a suitable (y0)I ∈ I are taken by solving the problem (4.4) and rounding
the answer x1 to a new estimate of y1. This provides a new optimization problem
ϕLP
r (y1) to solve for another x2 ∈ {Ax ≥ b, x ∈ Rn} = FLP , etc. The parameter

r starts off small and is increased as the algorithm proceeds, the object being to
generate a “good” feasible solution to (3.9). Clearly one immediately terminates after
a feasible yk ∈ {Ax ≥ b, xI ∈ I} = F is obtained.

Our model algorithm for a nonlinear MIP FP method is thus

xk+1 ∈ argmin
{
g (x) + rk+1

∥∥x− yk
∥∥
1
| Ax ≥ b, x ∈ Rn

}
,

yk+1 ∈ R (
xk+1

)
:= arg min

z:zI∈I

∥∥xk+1 − z
∥∥
1
(a rounding),(FP)

which we call the discrete proximal point algorithm. This gives a sequence of iterations
that must have

g
(
xk+1

)
+ rk+1I(xk+1) ≤ g

(
xk

)
+ rk+1I

(
xk

)
.

Forming a telescoping series for k = 0, . . . , N we find

g
(
xN

)− g
(
x0

) ≤ − N∑
k=0

rk+1
[
I(xk+1)− I

(
xk

)]

and as g is bounded below on FLP and
{
rk
}
is bounded away from zero we see that

an infinitely long sequence of iterates would lead to I(xk+1)− I
(
xk

)→ 0. In practice
the failure to return a significant decrease in I in subsequent iterates is associated
with the cycling phenomena which we study next.

5. An interpretation of cycling in the FP. So far we have shown that the
discrete proximal point algorithm is a descent algorithm for the function g + rI. In
this section we want to explain why we can associate the nonintegral local minimizers
of this function with the points around which the discrete proximal point algorithm
will cycle. From this we may deduce that a local minimum over FLP is obtained from
this iterative process.

For the purposes of this section we say that the discrete proximal algorithm cycles
if xk ∈ argmin{g(x) + r‖x − yk‖1 | x ∈ FLP }, where yk ∈ R(xk). This still leaves
the choice of rounded point in R(xk) ambiguous when the set contains more than
one point, a case we will discuss further later. However, this definition does remove
ambiguity about the possibility that minFLP {g(·) + r‖ · −yk‖1} has multiple optimal
solutions. In this case the cycling condition is easy to check by simply substituting
in xk. Alternative ways to describe cycling would be that yk+1 = yk or that the
process fails to further reduce g(·) + r‖ · −yk‖1 for an infinite number of iterations.
The former is the cycling definition used in all implementations of the feasibility
pump, while the latter would be the more accurate theoretical description of when
you have lost all hope to make further progress without restarting. Our definition
and that used in the feasibility pump would be equivalent if the mapping operations

D
ow

nl
oa

de
d 

04
/1

6/
13

 to
 1

34
.1

48
.1

0.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

844 BOLAND, EBERHARD, ENGINEER, AND TSOUKALAS

from xk to yk and vice versa were uniquely defined. Certainly if yk+1 = yk, then
xk+1 ∈ minFLP {g(·)+r‖ ·−yk+1‖1}, so our definition of cycling applies. The converse
is not necessarily true if xk has a nonunique rounding, in which case it depends purely
on machine accuracy whether a component is rounded up or down; FP algorithms
don’t specify which way values extremely close to 0.5 should be rounded. Thus current
FP algorithms may cycle through alternative roundings of the same LP feasible point,
or alternative LP optima for the projection problem. In what follows, we discuss these
issues and how they relate to local minima of g + rI.

Remark 5.1. The rounding R (x) is unique iff no components of x have fractional
parts 0.5. Also |R (x) | = 1, i.e., y ∈ R (x) is unique iff y ∈ R (x′) for all x′ sufficiently
close to x.

We claim that the local minimizers of g + rI over FLP correspond to points at
which the discrete proximal point method cycles. First, we see that if a point at which
the method cycles has a unique rounding, then it must be a local minimizer of g+ rI.
It is helpful for what follows to note that y ∈ R (x) iff I(x) = ‖x− y‖1.

Proposition 5.2. If the discrete proximal point algorithm cycles at xk and the
rounding yk ∈ R(xk) is unique, then xk is a local minimizer of g + rI over FLP .

Proof. From Remark 5.1 and since the rounding of xk is unique, there is a
neighborhood N(xk) such that for all points x ∈ N(xk), yk ∈ R(x). Suppose xk is
not a local minimum of g+ rI. Then there exists a point x′ close to xk, and certainly
within N(xk), so that g(x′) + rI(x′) < g(xk) + rI(xk). Now since yk ∈ R(xk),

g
(
xk

)
+ rI

(
xk

)
= g

(
xk

)
+ r

∥∥xk − yk
∥∥
1
≤ g (x′) + r

∥∥x′ − yk
∥∥
1

since the algorithm cycles at xk, so xk ∈ argminFLP {g(·) + r‖ · −yk‖1}. But g(x′) +
r‖x′ − yk‖1 = g(x′) + rI(x′) since yk ∈ R(x′). Thus g(xk) + rI(xk) ≤ g(x′) + rI(x′),
which is a contradiction.

If the rounding of xk is not unique, then it is possible that

xk ∈ argmin
FLP

{
g(·) + r

∥∥· − yk
∥∥
1

}
for some yk ∈ R(xk), but xk is not a local minimum of g + rI. In this case,
arguments in Proposition 5.2 show that there must exist ŷk ∈ R(xk) such that
xk �∈ argminFLP {g(·) + r‖ · −ŷk‖1}. We thus have the following result.

Proposition 5.3. If for all y ∈ R(xk), xk ∈ argminFLP {g(·) + r‖ · −y‖1}, then
xk is a local minimum of g + rI.

Proof. There exists a neighborhood of xk, say, N(xk), such that for x′ ∈ N(xk),
R(x′) ⊆ R(xk). The result now follows from arguments in Proposition 5.2.

In general, it will not be easy to check the condition of Proposition 5.3, since the
size of R(xk) could be exponential in the number of variables. In practice, it is often
the case that solutions to linear relaxations of binary integer programs have many
variables at 0.5. Thus we don’t expect algorithms to search all possible roundings.
However, one could view the minor perturbation step of the FP method, as described,
for example, in [5], as attempting a randomized search of alternative roundings. The
perturbation step selects a random number of variables (denoted by TT) to “flip,”
i.e., change the rounding direction, and chooses the variables with highest fractional
value. Thus variables either at 0.5 in the LP solution, or near it, are chosen first to
flip.

Thus we can view FP methods as seeking local minima of g + rI, first by using
the discrete proximal point algorithm to find xk ∈ argminFLP {g(·) + r‖ · −yk‖1},
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and second, if the rounding yk is not unique, by randomly searching the set of all
roundings. Of course, current FP methods do not explicitly choose the number of
variables to flip in minor perturbation based on the number of variables at or near 0.5
in the current LP solution, so when the latter is small, the minor perturbation step
tries to escape the nearby local minimum.

We are able to prove a converse form of Proposition 5.2—that if xk is a strict
local minimum of g + rI, then the discrete proximal point algorithm cycles—when g
is convex. This result does not depend on a unique rounding.

Remark 5.4. The assumption that we have a strict local minimum of g + rI at
xk is easily satisfied. For any convex function g take

r > max
{‖z‖ | z ∈ ∂g

(
xk

)}
.

Then if xk is a local minimum of g + rI, it is a strict local minimum.
Proposition 5.5. Suppose g is convex and xk is a strict local minimum of g+rI

over FLP . Then the discrete proximal point algorithm cycles at xk.
Proof. Arguing by contradiction, assume xk �∈ argminFLP {g(·) + r‖ · −yk‖1}.

Then we have

g
(
xk+1

)
+ r

∥∥xk+1 − yk
∥∥
1
≤ g

(
xk

)
+ r

∥∥xk − yk
∥∥
1
.

Define

x (λ) := (1− λ) xk + λxk+1;

then x(λ) ∈ FLP for all λ ∈ [0, 1] and using the convexity of g we have

g (x (λ)) + rI (x (λ)) ≤ g (x (λ)) + r
∥∥x (λ)− yk

∥∥
1

≤ (1− λ)
[
g
(
xk

)
+ r

∥∥xk − yk
∥∥
1

]
+ λ

[
g
(
xk+1

)
+ r

∥∥xk+1 − yk
∥∥
1

]
≤ (1− λ)

[
g
(
xk

)
+ r

∥∥xk − yk
∥∥
1

]
+ λ

[
g
(
xk

)
+ r

∥∥xk − yk
∥∥
1

]
= g

(
xk

)
+ r

∥∥xk − yk
∥∥
1
= g

(
xk

)
+ rI

(
xk

)
.

We can take λ arbitrarily small so that x(λ) can be in any small neighborhood
of xk. Thus xk cannot be a strict local minimum and so the result is proved by
contradiction.

In summary we have shown that in the convex case, when r is large enough, the
discrete proximal point algorithm terminates only when a local minimum of g + rI
over FLP has been computed, and such local minima are exactly the points at which
the algorithm cycles.

The use of penalties to produce a continuous version of an IP has been studied in
[26] and [24]. In these papers, global minimizers of certain concave penalty functions
are shown to correspond to solutions of an IP. We now compare our approach here
with that of [26] and [24].

Proposition 5.6. Suppose g is Lipschitz continuous and n = m (we have a pure
IP). Then for r > 0 sufficiently large, global minimizers of g + rI over FLP coincide
with the optimal solutions of the IP.

Proof. Let x̄ ∈ argminx∈FLP [g + rI]. Then

(5.1) g (x̄) + rI (x̄) ≤ g (y) + rI (y) = g (y) for all y ∈ F .
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Thus when x̄ is integral we have g (x̄) + rI (x̄) = g (x̄) and so x̄ must be an optimal
solution of the IP, establishing that global minimizers are optimal IP solutions. Thus
we only need to establish that x̄ must is integral when r > 0 is sufficiently large.

Now there exists a fixed neighborhood Bδ (y) of each y ∈ F within which I (x) =
‖x− y‖1 for all x ∈ Bδ (y). Shrink δ, if necessary, in order to ensure that {Bδ (y) |
y ∈ F} is not a cover of FLP . Consequently

G := FLP ∩
⎧⎨
⎩

⋃
y∈F

Bδ (y)

⎫⎬
⎭

c

is a closed set containing no integral points and so min {I (x) | x ∈ G} := ε > 0.
Counter to the assertion we assume that x̄(r) ∈ argminx∈FLP [g + rI] is not integral
for any sufficiently large r > 0. Let η(r) := miny∈F ‖x̄(r)− y‖1 = I(x̄(r)) and
by assumption η(r) > 0. A simple argument shows that η(r) is a monotonically
nonincreasing as a function of r. (Suppose r′ > r. By definition g(x̄(r′))+r′I(x̄(r′)) ≤
g(x̄(r)) + r′I(x̄(r)) and g(x̄(r′)) + rI(x̄(r′)) ≥ g(x̄(r)) + rI(x̄(r)). Subtracting gives
(r′ − r)I(x̄(r′)) ≤ (r′ − r)I(x̄(r)).)

Let r be sufficiently large so that r > max{L, L η(r)
ε } := r̄, where L > 0 is the

Lipschitz constant of g. With this fixed r we will now drop reference to r in x̄ and η.
By definition g (x̄) + rI (x̄) ≤ g (y) + rI (y) for all y ∈ F . Denote

levg+rI(y) := {x | g (x) + rI (x) ≤ g (y) + rI (y)}
= {x | g (x)− g (y) + r [I (x)− I (y)] ≤ 0}

⊆
{
x | I (x)− I (y)

‖x− y‖1
≤ 1

r
L

}
∪ {y} .(5.2)

By definition x̄ ∈ levg+rI(y) and y ∈ levg+rI(y) for each y ∈ F . Using (5.2) and
r > L we see that y is isolated point in the set levg+rI(y) in that

{x | g (x) + rI (x) ≤ g (y) + rI (y)} ∩ [Bδ (y) \ {y}] = ∅.
Thus ‖x̄− y‖1 ≥ δ > 0 for all y ∈ F implying x̄ ∈ G. Let ȳ ∈ argminy∈F ‖x̄− y‖1
and by assumption I (x̄) > 0. By (5.1), x̄ ∈ G, and the definition of ȳ we have

L
η

ε
= L
‖ȳ − x̄‖1

ε
≥ L
‖ȳ − x̄‖1
I (x̄)

≥ g (ȳ)− g (x̄)

I (x̄)
≥ r

and so arrive at a contradiction. Thus x̄ ∈ F is the optimal solution of the IP for r
sufficiently large.

This last result indicates that (major) random restarts in FP methods can be
viewed as a way of attempting to find a global minimizer of g+rI. Similar techniques
are used in global optimization.

Remark 5.7. In [26] and [24] various penalty functions for the integrality con-
straint are suggested. Suppose the function ρ of section 3 is defined using the func-
tional form

ρ (x) :=
∑
i

p (|xi|) ,

where p is one of the functions (3.2) to (3.5), all of which are integer compatible
regularization functions. Then the induced penalty on integrality that would follow
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from a similar analysis to that made in this paper would be

(5.3) ρ (x) = min
yI∈Zm

∑
i

p (|xi − yi|) .

For binary problems we have for (3.4) and (3.5) that

ρ (x) =
∑
i

min {1− exp (−α|xi|) , 1− exp (−α (|1− xi|))} ,

ρ (x) +
n

2
=

∑
i

min
{
[1 + exp (−α|xi|)]−1

, [1 + exp (−α (|1− xi|))]−1
}

The only difference between these penalties and that given by (5.3) using (3.2) to
(3.5) is that the parameter α directly penalizes the deviation of each |xi − yi| from
zero. In our approach we use an “external” multiplier r to increase the penalty, while
[24] use an “internal” multiplier α. In order to reproduce the approach of [24] we
would require a rewrite of the theory presented here to incorporate the use of this
alternative penalty parameter α instead of the parameter r into our framework. In
[24] the authors prove results similar to Proposition 5.6.

6. Incorporating cutting planes within FP. These results indicate that the
points at which the discrete proximal point algorithm cycles are local minimizers of
g + rI over FLP (at least when r is sufficiently large and g convex). If we want to
escape cycling episodes we need to change the structure of the optimization problem
we are, in effect, solving. One way is to remove (or cut) that part of the region FLP

that is associated with a nonintegral local minimum. This changes the feasible region
over which we are minimizing. Cuts have a long history in integer programming and
are used extensively in the branch and bound algorithm to help with fathoming of
nodes. We have an entirely different motivation for suggesting them here.

Before giving details of our use of cutting planes, we first note some interesting
connections with the work of Bonami et al. [8] on a feasibility pump approach to
nonlinear MIP (NLMIP). In [8], the FP rounding step is replaced with mixed integer
linear program (MILP) in which the linear constraints form an outer approximation
to the original nonlinear constraints. In numerical experiments, this MILP is not
necessarily solved to optimality but is partially solved until no improvement has been
observed over a number of nodes exceeding a given limit. Two types of cuts are added
to this MILP: (i) valid inequalities for the set defined by the nonlinear constraints
(these give rise to the enhanced method described in [8]), and (ii) cutting planes
generated by CPLEX in the course of its branch-and-cut (partial) solve. We note
that a cut of type (i) can be generated at every iteration and that these are held over
from one iteration of the method to the next, but there is no discussion of whether
CPLEX cuts are retained for subsequent MILP solves. We also note that cuts of
type (i) separate the integer “rounded” points from the feasible set defined by the
nonlinear constraints, and so adding them to the problem solved in the “rounding
step” prevents cycling. An alternative method to avoid some cycling in NLMIPs is
used in [10], where a tabu list is kept of recently found solutions.

Our approach to the use of cutting planes is complementary. Rather than finding
the FP iterate by solving

(6.1) xk+1 ∈ argmin
x
{cTx+ r

∥∥yk − x
∥∥
1
: Ax ≥ b, x ∈ Rn},
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we instead attempt to solve the corresponding integer program

(6.2) xk+1 ∈ argmin
x
{cTx+ r

∥∥yk − x
∥∥
1
: Ax ≥ b, xI ∈ I}

using a cutting plane algorithm. In other words, we seek to add cuts to the “projection
step” rather than the rounding step. We terminate prematurely (i.e., before arriving
at an integer solution) when the increase of the objective value in subsequent iterations
of the cutting plane algorithm becomes small, indicating that additional cuts are of
less value. Furthermore, we apply cutting conservatively, only seeking to add cuts
when cycling is detected, rather than at every iteration. In the context of FP for
problems with linear constraints, this approach has the benefit that the speed and
ease of solution of the rounding step is retained, and the harder partial MIP solve is
used only sparingly; otherwise a continuous linearly constrained problem is solved in
the projection step.

The cutting process removes feasible LP points that are not in the convex hull of
the integral feasible solutions, so we can (and do) retain prior cuts for use in subsequent
iterations. As we wish to remove the LP feasible point that we are currently cycling
around we must use the problem (6.2) in the cutting procedure.

Algorithm 1 outlines the basic FP framework given in [18] with the addition of
the cutting phase given in step 1. Starting with x0 corresponding to the optimal
solution over FLP and y0 corresponding to its rounded value (denoted by �x0�), at
each iteration the algorithm minimizes the distance between yk and xk+1 during the
pumping process (i.e., step 1 within the algorithm). Here, we solve the following LP
that is clearly equivalent to (6.1) but parameterized differently:

Δα(x, y
k) :=

√
S min

x∈FLP

{
α
cTx

‖c‖2
+ (1− α)

∥∥x− yk
∥∥
1√

S

}

≡ min
x∈FLP

{
α

√
S cTx

‖c‖2
+ (1 − α)

∥∥x− yk
∥∥
1

}
(6.3)

for α ∈ [0, 1], where ‖·‖2 is the Euclidean norm and S is the number of integer variables
in the current problem. (This will be l when the problem is a mixed binary problem.)
One now drives αk → 0 instead of rk → ∞. Note that the case α = 0 corresponds
to the original FP of [17]. In practice, the OFP codes [1] use objective (6.3). This is
also the objective used in the FP 2.0 of [18] and in all our numerical experiments.

The problem defined in (6.3) is formulated and solved as an LP [17]. For binary
problems this reformulation does not require the introduction of any additional ar-
tificial variables within the LP. Thus, we can carry any cuts generated into future
iterations. Unfortunately, for general integer programs, the addition of artificial vari-
ables changes the structure of the problem, making cuts in one iterate not directly
transferrable to future iterates. Carrying an artificial variable forward would result
in a rapid increase in the problem size so here we have focused on (mixed) binary
problems.

As in standard implementations, Algorithm 1 performs a major restart when Q
consecutive attempts to recover from cycling within the inner loop fails. However,
unlike standard FP, the inner loop contains both a perturbation and a cutting phase
to recover from cycling. The cutting phase is selected with probability 1 − β, where
β ∈ [0, 1] is a parameter of the algorithm. When β = 1, the algorithm uses only the
minor perturbations as per usual FP methods.
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Algorithm 1: The use of a cutting plane procedure within FP to recover from
cycling (the FPC algorithm).

Input : constraint set (A, b) and objective vector c; parameters K, Q, and
β ∈ [0, 1];

Initialize: solve x0 ∈ argminx{cTx : Ax ≥ b}; k ← 0; α← 1; and y0 ← �x0�;
(A0, b0)← (A, b)

/* outer loop */

while k < K do
/* inner loop */

while q < Q and k < K do
α← 0.9α
solve xk+1 = argminx{Δα(x, y

k) : Akx ≥ bk}
k ← k + 1
yk ← �xk�
if yk ∈ F then go to “Output yk”
if cycle detected then

q ← q + 1
if rand(0, 1) < β then

perform minor perturbation on yk

else
generate cuts to eliminate xk and append cuts to
constraint set (Ak, bk)

end

else
q ← 0

end

end

perform major restart on yk

end

Output yk

Output no feasible solution found

7. Computational results. The results reported in this section are based on
171 binary and mixed binary problems from MIPLIB20031 and COR@L2 libraries
for which the optimal solutions are known. The cutting plane procedure outlined
in section 6 was implemented within the Feasibility Pump 2.0 [18] code that was
provided by Fischetti and Salvagnin. In all cases, where applicable, we have used the
default settings in FP 2.0 including all the parameters, tolerances, and limits related
to FP 2.0.

To evaluate the merits of the proposed cutting plane procedure against FP 2.0, we
have tested each of the 171 instances against both FP 2.0 and FP 2.0 augmented with
the cutting plane procedure outlined in Algorithm 1, henceforth denoted FPC. We
claim that any improvements in the solution quality from using cutting planes within
the FP is due to the reduction in major restarts as a result of selectively tightening
the LP feasible region enabling iterates to escape points where FP cycles, and not
simply as a result of any tightening of the formulation around the LP optimal region.

1http://miplib.zib.de/miplib2003.php.
2http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances.
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Table 7.1

Average number of major restarts for each scheme over all runs associated with instances
belonging to each class.

FP 2.0 FPP FPC FPPC
Class A 0.02 0.18 0.18 0.12
Class B 2.9 13.43 0.83 1.70
Class C 93.3 99.6 3.1 2.76

To cement this claim, we also test all instances against a scheme denoted by FPP in
which FP 2.0 is run on the root node relaxation of F rather than on FLP , i.e., FPP
is the scheme in which FP 2.0 is run on the LP obtained by relaxing the integrality
requirements but including any preprocessing and cuts that may be generated from the
integrality requirements at the root node. Finally, we also test a scheme called FPPC
in which FPC is combined with FPP, i.e., FPC is run on the root node relaxation of
F rather than on FLP .

Note that in our computational experiments, we have used the available con-
straint propagation engine together with rounding rather than rounding only [18].
The constraint propagation complements our cutting framework as it can take advan-
tage of the cuts generated. We note that when constraint propagation was turned off,
sufficient improvement using cutting was obtained to make FPC without propagation
at least as good as FP 2.0 with propagation. Finally, we found that β = 0.5 gave
an effective mechanism to recover from cycling, alternating randomly between minor
perturbations and the cutting procedure. Experiments suggests that regular use of
the cutting phase helps shape the feasible region more uniformly in a way that helps
FPC to progress by avoiding restarts.

We use CPLEX 12.13 to solve the LP (6.3), to solve the root node relaxation
within FPP and FPPC, and to generate cuts within FPC. Since we cannot interject
in the cut generation process of CPLEX, we have restricted our test bed to binary
and mixed binary problems where artificial variables are not needed to solve (6.3),
and thus the cuts generated can be passed to future iterates. (See the discussion in
section 6.) In the case of FPC, the cut generation process is terminated when it fails
to increase the objective value of (6.3) by at least 30% from the previous value. This
occurs fairly rapidly and encourages progress without excessive time being consumed
in the cutting phase.

Finally, due to the random effects introduced by perturbations and major restarts,
each instance is tested on each of the 4 schemes on 10 independent runs. Furthermore,
since the 171 instances present problems that pose varied levels of difficulty for FP 2.0,
we classify each of the 171 instances into one of three classes depending on the number
of major restarts needed before an integer feasible solution is obtained using standard
FP 2.0. Class A includes 110 problems that terminated with no major restarts for
at least 7 of the 10 runs, class B contains 30 problems not in class A with less than
10 major restarts for at least 7 out of 10 runs, and class C contains the remaining 31
problems.

Table 7.1 reports the average number of major restarts for each scheme over
all runs associated with instances belonging to a given class. Hence, if IA, IB ,
and IC are the set of instances belonging to class A, B, and C, respectively, S =
{FP 2.0, FPP, FPC, FPPC} is the set of schemes, and Rs

ij is the number of major
restarts observed during the jth run (out of 10) of instance i using some scheme s ∈ S,

3http://www-01.ibm.com/software/integration/optimization/cplex-optimizer.
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Number of Outliers
Class No. Instances FP 2.0 FPP FPC FPPC
A 110 5 8 9 7
B 30 1 5 2 3
C 31 4 5 4 3

Total 171 9 18 15 13

Fig. 7.1. Distribution of the average number of major restarts by scheme and problem class,
with and without outliers, and breakdown of the number of outliers for each scheme and class.

then for each scheme s ∈ S and class l ∈ {A,B,C}, Table 7.1 reports

R̄s
l =

1

10|Il|
∑
i∈Il

10∑
j=1

Rs
ij .

Additionally, the box plots given in Figure 7.1 give the distribution of the average
(over the 10 independent runs for each instance) number of major restarts by scheme
and problem class. More precisely, for each class l ∈ {A,B,C}, and each scheme
s ∈ S, Figure 7.1 plots the distribution of values⎧⎨

⎩ 1

10

10∑
j=1

Rs
ij : i ∈ Il

⎫⎬
⎭ .

To present a clearer picture, Figure 7.1 includes box plots of these distributions with
and without outliers. Values are considered as outliers if they are larger than q3 +
1.5(q3 − q1) or smaller than q1 − 1.5(q3 − q1), where q1 and q3 are the 25th and 75th
percentiles, respectively. The number of outliers for each scheme in each problem
class is shown in the table at the bottom of Figure 7.1.

From Table 7.1 and Figure 7.1 it is clear that adding cuts strategically at points
where FP cycles has a dramatic effect on reducing the number of major restarts for
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Fig. 7.2. Percentage of instances where the average value of solutions obtained over the 10
independent runs by a given scheme is within a certain percentage to the optimal solution.

problems in classes B and C. FPP, FPC, and FPPC all increase the average number of
major restarts for problems in class A. However, as can be observed from Figure 7.1,
this is mainly due to a handful of outliers. For problems in class B, FPC reduces
the number of major restarts by more than a factor of three on average; however,
both FPP and FPPC have more restarts than FP 2.0 and FPC, respectively. This
is not completely surprising. Indeed, tightening the formulation through cuts at the
root node is likely to make the relaxation more fractional. The binary knapsack
problem is a classic example of this. Here, the LP relaxation has only one fractional
variable, whereas any strengthening of the problem with the addition of cuts is likely
to introduce greater fractionality. Similarly, for problems in class C, FPC reduces
the number of major restarts by more than a factor of 30 over FP 2.0 on average,
whereas FPPC and FPP are comparable to FPC and FP 2.0, respectively. Finally, it
is worth noting that although the number of major restarts is reduced significantly,
the overall number of FP iterations remains comparatively unchanged within the
various schemes. We next present the main results demonstrating the impact of the
reduction in major restarts on solution quality and thus the efficacy of the proposed
cutting scheme.

Figures 7.2 and 7.3 provide performance profiles for the average and best solutions
obtained respectively by the various schemes and for the various class of problems.
Each plot gives the percentage of instances where a solution was obtained by a given
scheme within a certain percentage to the optimal solution. More precisely, if Js

i ⊆
{1, . . . , 10} is the subset of runs of scheme s, for instance, i, that produced a solution,
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Fig. 7.3. Percentage of instances where the value of the best solution obtained over the 10
independent runs by a given scheme is within a certain percentage to the optimal solution.

and Zs
ij is the objective value of the best solution found, for instance, i, during run

j ∈ Js
i , then we define

Z̄s
i =

1

|Js
i |

∑
j∈Js

i

Zs
ij

to be the average objective value of solutions found, for instance, i, using scheme s,
and

Ẑs
i = max

j∈Js
i

Zs
ij

to be the best objective value among solutions found for, instance, i using scheme s.
We set Z̄s

i and Ẑs
i to ∞ if Js

i = {∅}. Moreover, given Z∗
i , the optimal solution, for

instance, i, the percentage gap to the average objective value of solutions found, for
instance, i using scheme s, is given by

avgGapsi =
(Z̄s

i − Z∗
i )

max{|Z∗
i |, 1}

× 100,

and similarly, the percentage gap to the best solution found, for instance, i using
scheme s, is given by

bestGapsi =
(Ẑs

i − Z∗
i )

max{|Z∗
i |, 1}

× 100.
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Fig. 7.4. Number of instances in each class with 1–5 failures, 6–9 failures, and 10 failures for
each scheme. Out of 1710 runs, FP2 failed to find a feasible point 113 times, FPP 119 times, FPC
58 times, and FPCP 68 times. FP2 fails to find a feasible solution in all 10 runs for an instance 5
times, while this occurs for FPC only once.

Then, for each percentage p ∈ [0, 100] and scheme s, Figure 7.2 plots the number
of instances whose average objective is within p percent of the optimal solution, i.e.,
plots p against the number of instances i that have avgGapsi ≤ p. Similarly, Figure 7.3
plots the number of instances i whose best objective is within p percent of the optimal
solution, i.e., plots the number of instances i where bestGapsi ≤ p. Figures 7.2(a) and
7.3(a) present this information over all instances for each of the four schemes, while
Figures 7.2(b)–7.2(d) and 7.3(b)–7.3(d) present this information for problems in each
of the three classes A, B, and C, respectively.

Since average gap can be reported only over runs which found a solution, it is
possible that finding no solution appears better under this statistic than finding a
poor-quality solution. To check that our conclusions are not being influenced by such
a distortion, we report statistics for the incidence of failure to find a feasible solution
for each scheme in Figure 7.4.

Although there is not much that separates FPC and FPPC, from Figures 7.2(a)
and 7.3(a) it is clear that on the whole, the cutting plane approaches outperform
FP 2.0 and FPP. When examining the three classes in isolation, we observe that for
problems in class A, it is the tightening of the feasible region (FPP) that yields most
of the improvement. This is to be expected as an attempt to reduce major restarts
(FPC, FPPC) cannot be very useful for problems that do not require many major

D
ow

nl
oa

de
d 

04
/1

6/
13

 to
 1

34
.1

48
.1

0.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A NEW APPROACH TO THE FEASIBILITY PUMP 855

Table 7.2

Average time (in seconds) taken by each scheme over all runs associated with instances belong-
ing to given class.

FP 2.0 FPP FPC FPPC
Class A 24.23 43.91 32.11 49.72
Class B 13.07 21.60 81.58 81.73
Class C 18.52 23.65 63.46 69.38

restarts to begin with. Here FPC does worse than FPP but better than FP 2.0, while
FPPC does better than FPP. The true impact of the proposed cutting scheme as
a mechanism for recovering from cycling is evident for the harder problems within
classes B and C. Indeed, the percentage of problems that could be solved to within
10% of optimality is almost twice that in FPC and FPPC as compared to FP 2.0 for
class C, and almost 50% more for problems in class B.

Admittedly, by examining the relative performance of FPP versus FP 2.0, we can
conclude that some of the aforementioned gains can be attributed to simply tightening
the formulation at the root node. However, there are significant gains to be had over
FPP by using cutting planes strategically to avoid cycling. When comparing the
average objective values obtained over the 10 independent runs, FPC is better on 21
occasions and worse on only 3 occasions for the 30 instances belonging to class B,
i.e., |{i ∈ IB : Z̄FPC

i < Z̄FP2.0
i }| = 21 and |{i ∈ IB : Z̄FPC

i > Z̄FP2.0
i }| = 3. For

the same measure, FPC is better on 24 occasions and worse on only 6 occasions for
the 31 instances in class C. Moreover, when comparing the best objective value found
over the 10 independent runs for instances in class C, FPC was better than FP 2.0
on 26 occasions and worse on only 4 occasions, i.e., |{i ∈ IC : ẐFPC

i < ẐFP2.0
i }| = 26

and |{i ∈ IC : ẐFPC
i > ẐFP2.0

i }| = 4. Even if we compare the best solution found
by FP 2.0 over the 10 independent runs with the average solution found by FPC,
the comparison still looks favorable for FPC, yielding 18 wins and 12 losses, i.e.,
|{i ∈ IC : Z̄FPC

i < ẐFP2.0
i }| = 18 and |{i ∈ IC : Z̄FPC

i > ẐFP2.0
i }| = 12.

Finally, Figure 7.4 confirms that the average gap performance is not distorted
by failure to find a feasible solution: the schemes with cutting fail to find a feasible
solution less often than those without and fail less seriously in the sense that there is
a lower incidence of a high proportion of failures for an instance. For example, FPC
fails to find a solution in all 10 runs only once, while FP2 fails 5 times. Of the total
1710 runs FP2 fails 113 times and FPC 58 times. See Appendix B and the tables
therein, which provide detailed statistics comparing the results of FP 2.0 with FPC
for individual instances.

Of course, the gains in terms of solution quality obtained from using cuts to
tighten the formulation and/or recover from cycling come at a cost—in particular,
the additional computational effort required in cut generation. Table 7.2 reports the
average time (in seconds) for each scheme over all runs associated with instances
belonging to a given class. Hence, if T s

ij is the time taken for the jth run (out of
10) of instance i using some scheme s ∈ S, then for each scheme s ∈ S and class
l ∈ {A,B,C}, Table 7.2 reports

T̄ s
l =

1

10|Il|
∑
i∈Il

10∑
j=1

T s
ij .

The box plots given in Figure 7.5 give the distribution of the average time (over the
10 independent runs for each instance) taken by each scheme for problems in each
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Fig. 7.5. Distribution of the average time taken (in seconds) by each scheme for problems in
each class.

class. More precisely, for each class l ∈ {A,B,C} and each scheme s ∈ S, Figure 7.1
plots the distribution of points⎧⎨

⎩ 1

10

10∑
j=1

T s
ij : i ∈ Il

⎫⎬
⎭ .

As before, Figure 7.5 includes box plots with and without outliers.
From Table 7.2 and Figure 7.5 it is clear that incorporating cut generation within

FP places a heavy burden on the computational effort required. However, almost all of
the reported increase in time is due to the cut generation process itself. Hence, we are
optimistic that through further tuning and a proper software solution and integration
of the cutting procedure with FP (as we are using CPLEX as a “black box” only),
any additional computational burden is likely to pay dividends in practical situations
where time may also be of the essence.

8. Further directions. The connection of FP methods with proximal point
algorithms, and the theoretical results we have presented here, motivate several new
directions of exploration for future research. One of our key insights is that the FP
pumping cycle appears to be seeking local minima of a weighted combination of the
original objective function and a measure of integrality. The method cycles at LP
feasible points which are either local minima or have multiple alternate roundings.
Alternate roundings could break the cycle; if this is not possible, then the point
must be a local minimum. This insight motivates a different approach to the FP
minor perturbation step, which chooses at random a number of variables to have
their rounding changed and changes those variables with fractional values closest to
0.5. Since variables at 0.5 are precisely those causing alternative roundings, it thus
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seems that minor perturbation has two functions: (a) to carry out a randomized
search of the set of alternative roundings when these are not unique, to check whether
the algorithm is likely to be at a local minimum, and (b) to escape the local minimum.
If the number of variables to have their rounding changed exceeds the number at or
near 0.5, then (b) is occurring; otherwise it is (a). Since the minor perturbation step
does not look at the number of variables at or near 0.5, there is an opportunity to
redesign this step: do (a) until there is convincing evidence the current point is a
local minimum, and then (b) escape it. It could be that current minor perturbation
does (a) quite well and our cutting approach does (b) well, but in both standard
FP methods and our cutting plane modification, steps (a) and (b) occur in a mixed
sequence.

In our cutting plane approach we have focused on the projection step. It would
also be interesting to test the trade-off between the time needed for the rounding step
and the resulting solution quality with an approach such as that of Bonami et al. [8].
FP2.0 [18] goes some of that way, incorporating information from the original problem
constraints in the rounding step by propagation. But the addition of a limited number
of cutting planes to form a MIP in place of the rounding step could be attractive if
the MIP solve is fast enough.

Another direction of further research is to explore the role of the weighting pa-
rameter, which weights integrality versus the original objectives. Current FP meth-
ods simply increase this parameter to increasingly emphasize integrality. However,
the theoretical results show that optimal solutions require the parameter to be suffi-
ciently small. It seems likely that further experimentation with how this parameter
is adjusted could yield more effective algorithms, and in particular that phases in
which the parameter is also decreased may be beneficial to producing higher-quality
solutions.

Appendix A. Proof of Proposition 3.7.
Proof. In view of Lemma 3.5, part 3, we need only show that if x = y0 is the

unique solution of (3.8) for y = y0, then it is a strict local minimum of ϕr. Note that
we already know that y0 is integral. Consider K := ϕr (y0) + 2 and denote

F I
K (y0) :=

{
xI ∈ I | inf

xI∈Rn−m
{f (xI , xR) + rρ ((xI , xR)− y0)} ≤ K

}
,

which is bounded due to the fact that FK (y0) as defined in (3.10) is bounded. Now
y 
→ ϕr (y) is upper semicontinuous when y 
→ ρ (x− y) is continuous. Thus y close
to y0 we have ϕr (y) + 1 < ϕr (y0) + 2 = K. Consequently for y sufficiently close
to y0 we have F I

K−1 (y) ⊆ F I
K (y0). Using the discreteness of the integral part of the

solutions in F I
K(y0) and that y0 is the unique minimum, we have some ε > 0 such

that

f (x) + rρ (x− y0) ≥ inf
xR∈Rn−m

{f (xI , xR) + rρ ((xI , xR)− y0)}
≥ f (y0) + 2ε = ϕr (y0) + 2ε for all xI
�= (y0)I with xI ∈ F I

K (y0) .

By lower semicontinuity of ρ and compactness of FK , for y sufficiently close to y0 and
all x with x ∈ FK (y0) we have

(A.1) rρ (x− y) ≥ rρ (x− y0)− ε.
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Consequently for all y sufficiently close to y0

f (x) + rρ (x− y) ≥ ϕr (y0) + ε for all xI �= (y0)I with xI ∈ F I
K (y0) .

Thus minx

{
f (x) + rρ (x− y) | (y0)I �= xI with xI ∈ F I

K (y0)
} ≥ ϕr (y0) + ε for all y

close to y0. Using F I
K−1 (y) ⊆ F I

K (y0) for y sufficiently close to y0 we have

ϕr (y)

= min
{

min
x:xI �=(y0)I

{
f (x) + rρ (x− y) | xI ∈ F I

K−1 (y)
}
,

min
x:xI=(y0)I

{
f (x) + rρ (x− y) | xI ∈ F I

K−1 (y)
}}

≥ min
{

min
x:xI �=(y0)I

{
f (x) + rρ (x− y) | xI ∈ F I

K−1 (y)
}
,

min
xR
{f ((y0)I , xR) + rρ (xR − yR) + rρ ((y0)I − yI)}

}
≥ min {ϕr (y0) + ε,Gr (yR) + rρ ((y0)I − yI)} .(A.2)

Now note that

Gr ((y0)R) ≥ ϕr (y0) = f (y0)

≥ min
zR∈Rn−m

{f ((y0)I , zR) + rρ (((y0)I , zR)− y0)} = Gr ((y0)R)

so Gr ((y0)R) = ϕr (y0). Also (y0)R is a local minimum of Gr because Gr (yR) ≥
ϕr ((y0)I , yR) for all y and y0 is a local minimum of ϕr, i.e., for yR close to (y0)R

Gr (yR) ≥ ϕr ((y0)I , yR) ≥ ϕr (y0) = Gr ((y0)R) .

Thus for y sufficiently close to y0 we have ϕy(y) ≥ ϕr(y0).
When we have an IP, then Gr (yR) = ϕr (y0) and so we have

ϕr (y) ≥ min {ϕr (y0) + ε, ϕr (y0) + rρ (y0 − y)} .

Thus we have a strict local minimum at y0. Furthermore, in the more general case of
a MIP when (y0)R is a strict local minimum of Gr then the inequality in (A.2) again
implies y0 must also be a strict local minimum of ϕr.

Appendix B. Detailed results for FP 2.0 and FPC. In Tables B.1, B.2,
and B.3 we report detailed statistics related to the runs associated with FP 2.0 and
FPC for each of the 171 instances. The first column gives the problem’s name, and
for each of the two schemes FP 2.0 and FPC, the remaining columns give the average
gap to the optimal solution over the 10 independent runs (i.e., avgGapFP2.0

i and
avgGapFPC

i ), the gap to the optimal solution from the best solution obtained over
the 10 independent runs (i.e., bestGapFP2.0

i and bestGapFPC
i ), the average number

of FP iterations, the average number of major restarts (i.e., R̄FP2.0
i and R̄FPC

i ), the
average number of cuts generated (only for FPC), the average time taken (in seconds)
(i.e., T̄FP2.0

i and T̄FPC
i ), and the number of occasions (of the 10 independent runs)

that a feasible solution was found.
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Table B.1

Detailed statistics for FP2.0 and FPC for problems in class A.

Name Gap Iterations MR CutsS Time Success

Average Best
FP2.0 FPC FP2.0 FPC FP2.0 FPC FP2.0 FPC FPC FP2.0 FPC FP2.0 FPC

aflow30a 133.2 63.9 104.7 18.7 17.9 15.4 0.0 0.1 12.9 0.1 0.5 10 10
aflow40b 41.5 53.1 16.9 15.3 8.3 16.2 0.0 0.1 16.1 0.1 1.5 9 10

air04 1.4 2.3 0.1 0.6 8.2 8.6 0.0 0.0 7.1 11.9 13.5 10 10
air05 2.8 3.7 1.5 1.5 6.8 9.3 0.0 0.0 0.5 3.0 4.4 10 10

cap6000 2.3 0.4 1.3 0.4 29.6 16.3 0.0 0.0 1.5 0.8 3.0 9 10
disktom 0.0 0.0 0.0 0.0 1.9 1.9 0.0 0.0 0.0 1.8 1.8 9 9

ds 969.2 754.1 558.1 446.2 78.8 80.5 0.0 0.0 0.0 599.8 552.1 10 10
fast0507 5.0 5.4 3.4 1.7 3.9 3.6 0.0 0.0 0.0 8.4 8.8 10 10

fiber 244.3 45.9 133.1 3.8 17.3 7.3 0.0 0.0 19.4 0.1 0.5 10 10
fixnet6 12.2 15.2 11.3 7.3 15.0 14.7 0.0 0.0 18.8 0.0 0.8 10 10
harp2 9.3 11.0 7.1 10.7 11.9 9.4 0.0 0.0 6.0 0.1 0.5 10 10

misc07 36.6 37.3 6.6 11.2 21.9 14.6 0.1 0.0 11.6 0.1 0.6 10 10
mkc 49.8 23.7 49.8 13.1 11.2 10.0 0.0 0.0 75.9 0.2 1.6 1 10

mod011 16.5 11.3 11.8 2.0 11.7 12.5 0.0 0.0 419.1 0.3 3.2 10 10
net12 41.2 28.7 19.2 0.0 31.9 27.0 0.4 0.0 59.9 7.5 8.3 10 10

nsrand-ipx 60.9 34.3 47.2 24.4 9.4 7.6 0.0 0.0 36.9 0.5 2.1 10 10
nw04 31.2 21.4 5.9 5.9 13.4 9.3 0.0 0.0 2.0 3.5 7.0 10 10
p2756 123.4 30.7 59.6 20.8 15.0 5.1 0.0 0.0 18.1 0.1 0.6 10 10
pp08a 63.9 27.7 41.4 10.7 10.8 11.3 0.0 0.0 114.9 0.0 0.7 10 10

pp08aCUTS 38.6 21.4 22.7 4.4 9.9 10.8 0.0 0.0 61.4 0.0 0.6 10 10
protfold 54.5 59.0 45.2 32.3 18.9 34.9 0.0 0.1 3.0 10.8 23.5 10 10

qiu 500.5 481.6 69.2 168.3 8.0 8.1 0.0 0.0 1.6 0.2 0.8 10 10
seymour 3.6 3.4 2.8 2.6 4.6 4.8 0.0 0.0 0.8 2.4 2.6 10 10

sp97ar 21.3 17.8 17.4 15.4 9.3 67.0 0.0 12.7 4.1 3.1 25.1 10 9
t1717 149.3 151.9 99.3 34.6 36.5 38.8 0.0 0.0 0.0 147.2 159.4 10 10

bc1 36.4 26.5 3.1 3.2 7.8 8.1 0.0 0.0 2.9 1.2 6.0 10 9
binkar10-1 6.5 6.8 1.0 1.0 6.2 1.7 0.0 0.0 1.2 0.1 0.2 10 10

dano3-3 0.0 0.0 0.0 0.0 12.3 12.8 0.0 0.0 47.2 36.7 103.2 10 10
dano3-5 0.0 0.1 0.0 0.0 21.4 34.1 0.0 0.7 315.4 72.1 341.1 10 10

leo1 34.0 17.8 17.6 11.9 8.6 5.7 0.0 0.0 12.0 0.7 1.9 10 10
leo2 28.9 15.3 15.8 2.7 8.3 6.4 0.0 0.0 15.6 1.4 3.7 10 10

neos1 39.5 11.6 36.8 5.3 12.4 11.6 0.0 0.0 100.2 0.1 1.3 10 10
neos5 5.0 5.8 0.0 0.0 5.6 6.3 0.0 0.0 1.3 0.0 0.6 10 10
neos9 0.5 0.4 0.0 0.0 12.0 11.3 0.0 0.0 9.7 24.3 62.2 10 10

neos11 0.0 0.0 0.0 0.0 8.1 6.2 0.0 0.0 5.0 1.1 1.7 10 10
neos12 16.9 38.5 7.7 7.7 4.9 6.9 0.0 0.0 0.0 6.2 10.6 10 10
neos13 14.7 30.7 0.3 19.6 28.0 26.8 0.0 0.0 1.1 32.8 63.6 10 10
neos14 46.0 45.1 35.5 27.7 7.3 9.3 0.0 0.0 331.7 0.0 1.1 10 10
neos15 52.0 46.1 39.0 30.5 7.5 11.9 0.0 0.0 341.4 0.0 1.2 10 10

neos-476283 0.1 0.2 0.1 0.1 10.6 12.4 0.0 0.0 8.4 110.5 194.1 10 10
neos-480878 2.4 1.3 0.3 0.3 13.0 9.8 0.0 0.0 15.2 0.5 2.1 10 10
neos-495307 5.7 5.7 5.7 5.7 7.1 7.2 0.0 0.0 1.4 0.3 1.8 10 10
neos-503737 50.2 46.5 19.2 30.8 3.9 3.2 0.0 0.0 0.0 0.6 0.6 10 10
neos-504674 77.4 64.6 24.5 31.7 29.6 32.2 0.0 0.1 213.8 0.2 1.3 10 10
neos-504815 68.4 40.8 42.0 10.7 28.0 27.9 0.0 0.0 113.5 0.1 1.1 10 10
neos-506428 176.0 135.0 160.0 40.0 25.3 33.8 0.0 0.0 2.8 1316.8 1482.7 5 4
neos-512201 62.9 67.3 20.8 14.1 28.6 27.8 0.0 0.0 169.6 0.2 1.1 10 10
neos-520729 0.3 0.4 0.2 0.0 4.4 4.9 0.0 0.0 0.0 3.7 27.4 10 10
neos-525149 2.6 2.6 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.1 0.2 10 10
neos-538867 179.1 165.6 65.6 82.0 15.5 13.3 0.0 0.0 11.3 0.1 0.4 10 10
neos-538916 278.1 173.8 152.2 47.8 20.4 16.8 0.0 0.0 6.0 0.2 0.5 10 10
neos-544324 12.0 11.3 6.7 6.7 15.2 18.9 0.0 0.0 0.0 5.9 22.0 10 10
neos-547911 9.2 7.7 7.7 7.7 5.2 5.2 0.0 0.0 0.0 1.3 1.7 10 10
neos-555694 24.0 24.7 6.5 6.5 5.2 9.2 0.0 0.0 0.0 0.2 0.7 10 10
neos-565815 0.0 0.0 0.0 0.0 3.8 4.4 0.0 0.0 2.2 1.2 1.6 10 10
neos-570431 14.4 18.9 11.1 11.1 6.8 7.3 0.0 0.0 4.4 0.3 0.7 10 10
neos-584146 0.0 0.0 0.0 0.0 15.0 14.1 0.0 0.0 6.8 0.2 0.9 10 10
neos-584851 29.1 49.5 0.0 36.4 17.8 75.9 0.0 5.4 12.1 0.3 2.2 10 9
neos-611135 187.8 122.7 50.8 50.1 14.1 10.5 0.0 0.0 15.0 3.3 7.6 10 10
neos-611838 0.7 0.5 0.7 0.0 10.5 6.8 0.0 0.0 618.2 0.4 2.0 10 10
neos-612125 0.5 0.5 0.5 0.0 10.8 10.8 0.0 0.1 582.0 0.4 2.8 10 10
neos-612143 0.7 0.5 0.7 0.0 10.7 9.1 0.0 0.0 629.6 0.4 2.8 10 10
neos-612162 0.7 0.7 0.7 0.1 10.7 8.6 0.0 0.0 644.5 0.4 2.7 10 10
neos-631784 8.8 4.4 4.0 2.0 16.8 15.8 0.0 0.0 113.5 3.5 13.1 10 10
neos-691058 56.6 0.4 0.0 0.3 14.1 10.0 0.0 0.0 0.0 2.8 4.0 10 10
neos-691073 21.3 0.6 0.3 0.3 10.3 8.3 0.0 0.0 0.0 3.0 3.4 10 10
neos-738098 0.0 0.0 0.0 0.0 23.5 20.3 0.0 0.0 2.0 14.7 26.9 10 10
neos-787933 322.3 163.7 293.3 73.3 19.0 19.0 0.0 0.0 789.7 3.7 10.0 10 10
neos-791021 51.3 28.0 40.0 6.7 29.7 27.4 0.0 0.0 453.5 1.0 8.5 10 10
neos-801834 6.6 6.6 6.0 6.6 1.0 1.0 0.0 0.0 0.0 0.4 0.4 10 10
neos-808214 0.0 0.0 0.0 0.0 110.7 111.8 1.2 0.0 10.5 13.0 14.6 10 10
neos-810286 8.3 5.2 3.9 0.5 18.7 15.0 0.0 0.0 5.4 21.1 19.2 10 10
neos-810326 20.0 29.7 7.0 2.4 16.1 21.9 0.0 0.0 1.9 4.4 8.0 10 10
neos-820879 14.1 13.5 8.0 7.1 9.5 7.1 0.0 0.0 0.9 0.9 1.0 10 10
neos-824695 2.3 0.6 0.0 0.0 8.9 5.2 0.0 0.0 0.5 3.3 3.9 10 10
neos-825075 22.4 12.1 0.0 0.0 6.8 5.5 0.0 0.0 0.8 0.1 0.1 10 10
neos-826250 0.7 0.0 0.0 0.0 4.1 3.5 0.0 0.0 0.6 1.3 1.6 10 10
neos-826812 0.5 0.2 0.0 0.0 4.7 2.9 0.0 0.0 0.5 2.4 2.6 10 10
neos-827015 90.9 167.0 48.4 53.3 3.8 6.3 0.0 0.0 0.0 48.4 73.0 10 10
neos-827175 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.5 2.3 10 10
neos-829552 97.7 97.7 97.7 97.7 1.0 1.0 0.0 0.0 0.0 11.7 11.9 10 10
neos-841664 18.4 3.9 3.1 0.0 18.9 9.8 0.3 0.0 235.0 4.9 6.8 10 10
neos-847302 15.0 0.0 0.0 0.0 12.6 10.2 0.0 0.0 2.2 1.2 1.3 10 10
neos-860300 36.3 36.1 36.2 35.7 3.0 3.0 0.0 0.0 0.0 0.6 0.9 10 10
neos-885524 7.3 5.1 0.0 0.0 38.7 0.9 3.2 0 0
neos-892255 14.3 12.9 14.3 0.0 6.0 5.6 0.0 0.0 0.0 0.3 0.5 10 10
neos-906865 0.0 7.6 0.0 0.0 7.9 8.4 0.0 0.0 2.9 0.1 0.5 10 10
neos-932816 0.0 0.0 0.0 0.0 3.1 2.5 0.0 0.0 0.0 4.1 3.9 9 10
neos-933364 6.9 6.9 5.6 5.4 6.5 6.5 0.0 0.0 14.2 0.1 0.9 10 10
neos-933562 21.7 28.3 0.0 0.0 16.5 15.5 0.0 0.0 0.0 1.9 2.0 10 10
neos-933815 7.3 6.6 5.5 4.1 7.1 6.2 0.0 0.0 0.0 0.1 0.3 10 10
neos-933966 226.7 51.0 13.1 10.1 9.8 5.0 0.0 0.0 1.0 7.2 7.1 10 10
neos-934184 6.5 7.3 4.7 5.0 7.0 6.6 0.0 0.0 14.2 0.1 0.8 10 10
neos-934278 72.2 145.5 25.2 26.6 4.2 6.3 0.0 0.0 0.0 7.8 9.5 10 10
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Table B.1

(Continued).

Name Gap Iterations MR Cuts Time Success

Average Best
FP2.0 FPC FP2.0 FPC FP2.0 FPC FP2.0 FPC FPC FP2.0 FPC FP2.0 FPC

neos-934441 54.2 58.4 24.1 31.2 7.6 4.4 0.0 0.0 0.0 10.4 9.5 10 10
neos-935234 42.6 52.7 20.0 22.9 4.9 5.4 0.0 0.0 0.0 10.0 10.3 10 10
neos-935348 37.3 55.1 21.1 17.3 4.5 4.0 0.0 0.0 1.5 9.3 8.9 10 10
neos-935674 2895.0 2630.0 1733.3 850.0 8.1 6.5 0.0 0.0 1.0 1.0 1.1 10 10
neos-935769 5.5 4.4 2.4 0.8 7.4 6.8 0.0 0.0 6.9 17.9 18.8 10 10
neos-941698 170.0 200.0 0.0 0.0 21.5 17.2 0.0 0.0 2.0 0.7 0.8 10 10
neos-941782 20.0 25.0 5.6 0.0 18.9 19.6 0.0 0.0 8.8 1.0 1.5 10 10
neos-942323 28.2 27.1 17.6 17.6 19.9 25.0 0.0 0.0 6.0 0.3 0.6 10 10
neos-948268 0.0 0.0 0.0 0.0 3.5 3.6 0.0 0.0 0.0 10.6 10.7 10 10
neos-955215 2.2 1.7 0.4 0.4 4.3 4.6 0.0 0.0 2.4 0.0 0.3 10 10
neos-957323 0.2 0.3 0.0 0.0 5.3 4.6 0.0 0.0 0.5 5.7 19.1 10 10

neos-1067731 0.6 5.4 0.4 0.4 5.1 5.8 0.0 0.0 0.3 2.4 4.4 10 10
neos-1109824 55.4 43.4 37.8 8.2 24.7 18.4 0.7 0.2 45.0 0.7 1.8 10 10
neos-1171448 1.1 0.6 0.3 0.0 14.8 13.2 0.0 0.0 20.5 2.0 18.2 10 10
neos-1200887 12.4 8.9 5.4 2.7 11.4 13.6 0.0 0.0 12.8 0.1 1.0 10 10
neos-1211578 4.5 2.8 2.6 1.3 13.6 10.9 0.0 0.0 12.2 0.0 0.7 10 10

Table B.2

Detailed statistics for FP2.0 and FPC for problems in class B.

Name Gap Iterations MR Cuts Time Success

Average Best
FP2.0 FPC FP2.0 FPC FP2.0 FPC FP2.0 FPC FPC FP2.0 FPC FP2.0 FPC

10teams 10.9 9.7 4.5 3.2 109.0 89.3 2.0 0.0 6.7 7.3 6.6 10 10
dano3mip 12.3 7.9 6.9 6.1 68.5 85.9 0.4 0.1 5994.9 330.2 1536.6 10 4

markshare1 42560.0 27120.0 21900.0 12200.0 68.4 67.9 3.4 0.7 68.1 0.1 2.8 10 10
markshare2 59110.0 39830.0 26700.0 25600.0 70.0 69.7 3.0 0.3 64.4 0.2 3.1 10 10

opt1217 3.7 0.0 0.0 0.0 38.3 33.7 0.6 0.1 7.1 0.1 1.3 10 10
pk1 574.5 115.1 272.7 63.6 57.6 278.8 1.4 0.6 294.3 0.2 13.1 10 9

swath 164.1 130.6 65.2 35.6 162.5 370.5 5.0 0.1 606.2 10.1 231.5 10 6
tr12-30 27.5 37.2 23.5 22.6 27.0 21.4 0.3 0.0 835.6 0.1 3.3 10 10

vpm2 27.3 19.5 12.7 3.6 17.0 11.6 0.4 0.0 26.2 0.0 0.5 10 10
22433 0.3 0.1 0.0 0.0 65.0 67.8 6.1 0.2 18.7 0.3 1.4 10 10
23588 2.4 1.9 1.1 1.0 91.8 71.7 4.3 0.1 7.7 0.3 0.8 10 10

bienst1 13.9 13.0 0.0 0.0 53.5 102.8 2.7 0.5 537.2 0.5 34.6 10 10
bienst2 15.0 7.5 9.3 2.1 54.7 79.4 2.5 0.6 578.7 0.6 24.9 10 10

mcf2 19.3 22.8 1.1 9.6 96.2 455.4 20.4 0.3 2403.2 2.7 449.7 10 7
neos-522351 36.8 2.3 19.2 0.0 50.4 27.1 1.8 1.7 263.8 0.4 3.0 10 10
neos-582605 0.0 0.0 0.0 0.0 67.5 45.5 2.6 0.4 80.5 0.8 8.8 10 10
neos-583731 0.0 0.0 0.0 0.0 37.9 43.5 0.1 0.0 190.6 0.2 1.4 10 10
neos-631164 11.6 11.9 7.0 8.9 75.8 70.0 1.2 0.2 64.5 0.4 1.0 10 10
neos-631517 10.3 10.1 7.5 8.7 75.4 72.7 0.9 0.4 53.5 0.3 0.9 10 10
neos-777800 0.0 0.0 0.0 0.0 21.5 32.6 0.7 0.4 2.6 9.3 16.3 10 10
neos-831188 12.4 15.5 1.8 1.6 137.8 176.5 4.4 0.0 30.7 11.9 21.7 10 10
neos-839838 33.9 22.4 12.9 9.3 56.9 234.4 6.7 15.0 124.9 3.6 51.8 10 8
neos-839859 235.9 39.7 61.8 13.0 42.2 19.3 1.5 0.2 30.9 0.5 2.0 10 10
neos-886822 44.9 38.7 24.2 22.4 114.0 112.2 3.3 0.5 27.2 2.0 5.0 10 10
neos-911880 210.1 51.8 152.3 11.2 51.0 36.7 1.0 0.6 101.1 0.1 2.0 10 10
neos-911970 230.0 44.7 115.0 11.4 50.2 39.3 0.9 0.8 126.0 0.2 1.6 10 10
neos-912015 52.9 55.0 28.6 21.4 164.9 188.5 2.6 0.0 7.7 8.7 11.2 10 10

neos-1053234 111.8 51.0 68.2 27.6 39.1 34.6 4.5 0.8 112.7 0.4 6.7 10 10
neos-1120495 56.3 50.8 21.3 18.6 17.3 14.7 0.1 0.0 35.1 0.4 1.1 10 10
neos-1121679 2799.4 1681.3 1506.3 700.0 68.3 69.7 2.2 0.5 74.9 0.1 2.9 10 10

Table B.3

Detailed statistics for FP2.0 and FPC for problems in class C.

Name Gap Iterations MR Cuts Time Success

Average Best
FP2.0 FPC FP2.0 FPC FP2.0 FPC FP2.0 FPC FPC FP2.0 FPC FP2.0 FPC

a1c1s1 60.1 34.9 38.6 21.8 51.3 18.6 13.4 0.0 744.0 0.5 3.7 10 10
danoint 17.8 18.1 5.1 10.4 112.3 353.5 33.8 0.3 2039.5 2.6 185.0 10 8
glass4 294.6 141.9 138.9 83.3 218.3 119.1 101.9 4.1 1455.1 0.3 9.8 10 10

liu 203.0 142.7 169.6 93.0 152.2 120.1 12.9 2.1 3857.0 1.9 53.0 10 10
mas74 72.3 17.7 43.1 9.1 106.2 590.7 13.9 0.4 528.6 0.1 44.3 7 5
mas76 18.8 4.3 6.3 2.3 106.2 481.9 16.7 0.3 365.0 0.2 25.9 7 5

modglob 6.6×106 6.4×106 6.5×106 6.4×106 66.1 28.1 27.2 1.5 81.5 0.1 1.7 10 10
set1ch 67.2 19.9 47.7 9.0 35.6 13.0 6.5 0.0 136.9 0.1 0.4 10 10

aligninq 1.3 1.4 0.9 1.3 249.4 185.6 39.3 0.0 38.6 9.1 12.6 9 9
neos2 203.3 197.7 843.7 763.1 124.5 1.1 1304.7 9.5 438.0 0 3
neos4 7.4 5.1 614.6 119.7 285.9 0.2 31.6 40.7 79.5 0 10

neos17 65.5 56.5 51.6 23.0 689.5 144.8 659.1 32.5 131.6 1.6 18.8 7 10
neos-430149 592.0 521.6 485.4 164.7 1208.6 172.1 266.4 0.7 280.3 5.3 27.7 2 10
neos-598183 159.0 25.3 103.4 0.6 318.2 133.6 49.2 0.8 380.9 3.0 10.8 7 10
neos-603073 139.2 1.0 31.3 0.4 180.5 21.1 64.3 0.1 140.1 1.5 1.8 10 10
neos-631694 0.0 0.0 715.8 98.9 54.7 0.1 246.6 11.0 7.4 0 10
neos-803219 9.9 13.1 7.8 4.5 1110.4 368.4 79.3 12.7 221.9 3.1 38.8 2 10
neos-803220 11.0 17.5 4.7 4.4 263.9 109.7 32.7 1.2 114.9 0.6 9.9 10 10
neos-806323 51.3 38.1 44.7 8.7 958.6 245.7 168.1 3.8 223.9 5.3 15.5 2 10
neos-807639 7.3 9.1 2.7 6.7 180.5 86.3 97.8 12.4 16.5 0.9 4.1 10 9
neos-807705 18.2 21.1 8.8 15.7 129.9 56.0 34.3 0.8 72.0 0.7 4.5 10 10
neos-848589 109350.2 7319.7 67875.2 526.8 68.9 51.9 10.9 2.5 1013.2 117.3 846.5 10 10
neos-863472 15.4 9.1 11.1 0.7 82.9 52.7 12.9 0.1 150.5 0.3 2.3 10 10
neos-880324 0.4 0.0 1053.4 240.9 380.6 6.4 320.3 1.6 7.2 0 9
neos-912023 46.2 32.3 15.4 0.0 244.5 189.3 10.6 0.0 8.2 8.7 8.0 10 10
neos-913984 0.0 0.0 0.0 0.0 1051.6 18.2 10.6 0.2 34.5 322.2 14.3 3 10
neos-916792 27.2 16.8 10.8 7.2 227.7 121.1 24.9 0.3 40.7 22.8 68.7 9 10

neos-1053591 5.0 3.1 2.0 0.1 221.9 78.7 126.4 1.1 148.0 0.3 7.4 10 10
neos-1112782 3891.8 560.9 3757.8 52.4 160.4 39.3 80.4 1.9 165.1 1.7 7.5 10 10
neos-1112787 3512.3 242.8 3366.4 37.7 85.7 45.1 34.8 4.1 158.7 0.8 6.7 10 10
neos-1173026 63.2 34.1 35.5 20.6 54.0 45.9 18.5 4.5 70.9 0.2 5.2 10 10
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